The early twentieth century warming and winter Arctic sea ice
نویسنده
چکیده
The Arctic has featured the strongest surface warming over the globe during the recent decades, and the temperature increase has been accompanied by a rapid decline in sea ice extent. However, little is known about Arctic sea ice change during the early twentieth century warming (ETCW) during 1920–1940, also a period of a strong surface warming, both globally and in the Arctic. Here, we investigate the sensitivity of Arctic winter surface air temperature (SAT) to sea ice during 1875–2008 by means of simulations with an atmospheric general circulation model (AGCM) forced by estimates of the observed sea surface temperature (SST) and sea ice concentration. The Arctic warming trend since the 1960s is very well reproduced by the model. In contrast, ETCW in the Arctic is hardly captured. This is consistent with the fact that the sea ice extent in the forcing data does not strongly vary during ETCW. AGCM simulations with observed SST but fixed sea ice reveal a strong dependence of winter SAT on sea ice extent. In particular, the warming during the recent decades is strongly underestimated by the model, if the sea ice extent does not decline and varies only seasonally. This suggests that a significant reduction of winter Arctic sea ice extent may have also accompanied the early twentieth century warming, pointing toward an important link between anomalous sea ice extent and Arctic surface temperature variability.
منابع مشابه
The Seasonal Atmospheric Response to Projected Arctic Sea Ice Loss in the Late Twenty-First Century
The authors investigate the atmospheric response to projected Arctic sea ice loss at the end of the twentyfirst century using an atmospheric general circulation model (GCM) coupled to a land surface model. The response was obtained from two 60-yr integrations: one with a repeating seasonal cycle of specified sea ice conditions for the late twentieth century (1980–99) and one with that of sea ic...
متن کاملThe Early Winter Sea Ice Variability under the Recent Arctic Climate Shift*
This study reveals that sea ice in the Barents and Kara Seas plays a crucial role in establishing a new Arctic coupled climate system. The early winter sea ice before 1998 shows double dipole patterns over the Arctic peripheral seas. This pattern, referred to as the early winter quadrupole pattern, exhibits the anticlockwise sequential sea ice anomalies propagation from theGreenland Sea to the ...
متن کاملTwenty - First - Century Climate Impacts from a Declining
A steady decline in Arctic sea ice has been observed over recent decades. General circulation models predict further decreases under increasing greenhouse gas scenarios. Sea ice plays an important role in the climate system in that it influences ocean-to-atmosphere fluxes, surface albedo, and ocean buoyancy. The aim of this study is to isolate the climate impacts of a declining Arctic sea ice c...
متن کاملArctic sea ice response to atmospheric forcings with varying levels of anthropogenic warming and climate variability
[1] Numerical experiments are conducted to project arctic sea ice responses to varying levels of future anthropogenic warming and climate variability over 2010–2050. A summer ice‐free Arctic Ocean is likely by the mid‐2040s if arctic surface air temperature (SAT) increases 4°C by 2050 and climate variability is similar to the past relatively warm two decades. If such a SAT increase is reduced b...
متن کاملMagnitude and pattern of Arctic warming governed by the seasonality of radiative forcing
Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012